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ABSTRACT 

Two particle inclusive distributions and correlation ,func- 

tions are computed from a model which emphasizes single pro- 

duction of resonance-like hadrons (novas) which cascade decay 

through pion emission. Strong positive correlations are predicted 

at small values of the relative rapidity (Ay) o:f the final pions. The 

magnitude and energy dependence of < nn- > and < n,-(nn- - 1) > 

are reproduced correctly. Good agreement is obtained with exper- 

imental dO/dy, d20/dy~ldy,, and C(Y,, y2 ) 
t 

from data on n p - 

n-n-X at 18. 5 GeV/c. 

t 
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A wealth of information has become available on single particle (inclu- 

sive) distributions1 in high energy hadronic interactions. Many theoretical 

points of view are consistent with present data, 
2 

but one may expect that dif- 

ferences between models will be conceded when data are confronted at higher 

energies. Differences between models may also be found in the analysis of 

correlations 
3 

among produced secondaries, in data at present machine energies. 

These correlations may represent obvious interactions among particles in the 

final state (e. g. resonances), but should also provide insight into the multi- 

particle production mechanism proper. In this paper, we focus on correla- 

tions between two n- 
_ _ 

in two particle inclusive reactions such as np 4 n n X 

and pp -n-n-X. 
_ _ 

Because the (n TI ) system has exotic quantum numbers, 

we expect that any correlations will reveal information primarily about the 

production mechanism. 

Correlations will appear among the variables describing the final parti- 

cles, e.g. the rapidities y, the transverse momenta p 
T’ 

and the angle ep 

t 
between transverse momentum vectors. In K p - V-TT-X , a maximum is 

observed in the two pion distribution at zero relative rapidity. 
4 

This may 

suggest a physical picture in which both secondaries are fragments of the same 

object (beam or target). It is tempting to pursue t.his picture in analyzing 

more extensive data available now from pion induced reactions. 
5 

In view of 

the large number of variables, it is hard to reach conclusions at a general 

level. Moreover, because it is valuable to have some preconceptions when 

examining new data, we adopt the quantitative framework offered by the nova 

model of particle production. 
6 

In this (fragmentation) model, single excitation 
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of either the beam or the target particle is followed by eventual cascade decay 

of the resonance-like excited hadron. Although single excitation is not exhaus- 

tive, the model reproduces simply all important features of single particle 

distributions at current accelerator energies. Well defined predictions are 

made also for two particle correlations, which, as we will show, are in reason- 

able agreement with available data. Our results, displayed in Figs. 1, 2 and 

3, represent the first realistic predictions for two particle correlations at 

presently available energies. Several experimental analyses are now in prog- 

ress, 5, 7, 8 and our detailed model calculations may be of value. 

Predicted single-particle distributions should reproduce correctly the 

observed rapidity and transverse momentum behavior of spectra, and be nor- 

malized to <n > 0. 
1nel’ 

Even if the total inelastic cross section 0. 
1nel is 

kept as a normalization constant, as in our case, the fractional number of 

secondaries of a given charge should be a prediction of the model. When 

analyzing two particle spectra, one should reproduce a five dimensional dis- 

tribution, d50/dyidy2dpTidpT2dq, whose integral is <n(n - 1) > Uinel. The 

average value <n(n - 1) > should also be a prediction of the model. 

As discussed in detail in Ref. 6, upon summing contributions from 

excitation of beam and target, we write the single particle rapidity distribu- 

tion as 

doi c 
dy= aCa s 

P,(M) nai (M) Aa (M, Y) dM , 

where a refers to either target or beam, and i labels the type of observed 

secondary. The integral extends over the entire mass spectrum. As written, 
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Eq. (1) implies an average over all pT2. Function A(M, y) is the normal- 

ized decay distribution (in y) of a nova of mass M. To obtain A(M, y), we 

begin with the following simple symmetric decay distribution in the nova rest 

dD/dpT2dpL = (a/K2w) exp[- (pT2+ P,~)/K’] . (2) 

2 1 
Here, w = [pT2t pL2t mn 1’; a normalizes the distribution to unity; and K 

(- 0.45 GeV/c) is adjusted to reproduce a typical Q value of 330 MeV at each 

step in the decay chain of the nova. 
9 

This value of K also leads to good agree- 

ment with distributions in p 
T’ 

Function A(M, y) is obtained after Lorentz- 

transforming Eq. (2) to the center of mass system, and performing an integral 

2 
over p 

T ’ 

In Eq. (1), p(M) prescribes the weight assigned to the nova of mass 

M; as discussed in Ref. 6, there is little freedom in the choice of this function. 

Function n’(M) is the average number of secondaries of a particular kind (i) 

expected from the decay of a nova of mass M. To obtain nl(M), we modify 

a statistical distribution by strong charge-related effects met in the first 

few steps of the decay. 
6 

As fixed by our average Q value, the total number 

n(M) of pions of all charges is 2. 1 (M - MO), where M. is the mass of the 

excited particle (target or projectile). For a positively charged nova of mass 

M, we find that simple and reasonable approximations are 
10 

n-(M) a [n(M) - l-j/3 

n-(M) (n-(M) - 1) CJ (n(M) - i)(n(M) - 3)/9 . 

(3) 

(4) 
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The value zero is used when n(M) < 1 or 3, respectively. 

This is an oversimplified picture, of course, and it is important to 

verify that our predicted average multiplicity reproduces the energy depend- 

ence and actwl value of <n- > for pp - n-X. Upon combining Eqs. (3) 

and (4) with an excitation spectrum 
6 

p(M) = (M - Mo)-2 exp(-2/(M - MO)) , (5) 

we obtain results shown in Fig. 1. Given the agreement we achieve with 

<n->, it would be valuable to check our predictions for < n-(n- - 1) > . It 

may also be noted in Fig. i that our calculated values of <n- >2 and 

<n-(n- - 1) > are approximately equal over the energy range 20 to 30 GeV/c; 

thus, our results approximate a Poisson distribution in this energy range. 

However, as p 
lab 

increases, we expect that <n-(n- - 1) > will become 

decidedly larger than <n- >2. These features are in good agreement with 

a recent compilation of available data. 
11 

Identical computations of <n > and <n(n - 1) > may be done for 

rrtp induced reactions. At 18. 5 GeV/c, where data are available, we find 

<n->= 1.21 and <n-(n- - 1) > = 1. 30; these may be compared with exper- 

imental values 
12 

1. 32 and 1. 26, respectively. Although agreement is reached 

only at the 10% level, it should be stressed that the same model is used to 

describe meson and baryon excitation and decay. 
13 

It is instructive that 

< n(n - 1) >/< n > is somewhat too large. This corresponds in the model 

to too strong a weight being assigned to the large M end of the excitation 

spectrum p(M). This end is, of course, poorly known a priori. The lesson 
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is that data on correlations probe high mass excitations, not tested in a sensi- 

tive way by single particle spectra at present energies. 
14 

New data on energy 

dependence of < n(n - 1) >/< n >’ would be particularly valuable and will pro- 

vide a good test of the fragmentation hypothesis. i5Keeping Eq. (5) as our best 

present guess, we are led to two particle distributions whose normalization 

will be too large by - 13%. Perfect agreement can be reached at the cost of 

as yet ad hoc modifications to p(M). 

Attaching both observed n-Is to the same nova, the two particle inclu- 

t _ _ 
siv~e distribution for TI p + n TI X is 

d20/dy,dy2 = gc a 
s 
‘PaP4dWdf) - 1) Au&f, yl)Aa(M, y2)dM. (6) 

Again, the distribution has been averaged over t.ransverse momenta, but the 

simple form of Eq. (2) allows easy determination of p 
Td 

ependences. 

Results obtained from numerical evaluation of Eq. (6) are shown in 

Fig. 2, along with some recent data. 
5,12 

The shapes of these distributions, 

which emerge from our essentially zero pa~rameter model, are in reasonable 

agreement with data, especially at small y where the cross-section is largest. 

This shows that the two n- have a strong tendency to follow each other, a 

fea,ture stressed by the model. Discrepancies between our calcul.ations and 

the data appear systematically at larger y, where cross-sections have drop- 

ped by an order of magnitude. This is not surprising because double-excita- 

>:: 
tion (e. g. production of pN ), is not present in our model. a.nd is likely to 

give back-to-back rapid n- secondaries. At intermediate values of y, 

experimental distribut:ions are broader than our computations. This effect 
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is connected to the overly simple form of Eq. (2) which neglects polarization 

effects and falls too sharply at large p 
T’ 

Although our picture does not 

accommodate all observed features, Fig. 2 shows that it seems to be capable 

of reproducing the bulk of present data. Our model thus provides dominant 

effects from which corrections can be contemplated. 

Two particle distributions in pp and Kp reactions are readily cal- 

culabl,e and show similar treads. It will be very interesting to compare them 

with forthcoming data in the lo-30 GeV/c range. 597, 8 

To summarize effects such as those shown in Fig. 2, one ca,n define 

a correlation function C(yi, y2) as follows: 

C(Y,, Y,) = -<ncn-&T 
1llel 

4% - (;,:6,_-f g $; (7) 

This definition differs slightly from others found in the literature, 
2 

but seems 

more appropriate in an energy regime where <n > is of order unity. Observe 

that Eq. (7) agrees with more common defi.nitions if the distribli.tion in n 

obeys a Poisson law. The integral 
s 
‘C(Y,, y2)dyldy2 = 0. In Fig. 3, we give 

values of C computed for several values of ra.pidit:y. The pronounced struc- 

ture is remarkable. The fact that correlatidns are indeed large may be appre- 

ciated from the observat~ion that t,he ratio C/ [ai,,: 
-1 2 

<n(n,- 1) 3 d u/dyldy2] = 

0.4 at y1 = y2 = 0. Since we keep only dominant single excitation terms, 

this may be an overestimat~e. 

As mentioned previously, correlations in y for different values of 

pT 
are calc,ulated easily. An interesting effect. i-s t,ha.t the two part,icle 

ra,pidity distributions become broader when p 
T 

is restrict,ed to be small. 
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This effect reflects our sequential decay picture, as expressed by the statis- 

tical distribution, Eq. (2). A finer test of the notion of sequential decay is 

the weakness of any correlation in cp for two n-, which are rarely emitted 

in successive steps. 
7 

Stronger back-to-back cp correlations can be present 

for TI’TT-. As a final point, we remark that our analysis proceeds in slightly 

different way for inclusive processes in which one of the observed final parti- 

cles has quantum numbers identical to one of the incident particles. Another 

term must be added to Eqs. (I) and (6), corresponding to the quasi-elastically 

scattered primary. The relations given in Eqs. (3) and (4) are also modified. 

As a result, d2ajdy1dy2 at small y is approximately three times as large 

_ _ t - - 
for n p -n n X as for TI p +n n X at 18. 5 GeV/c. These points will be 

discussed elsewhere 

We are indebted to Dr. W. Shephard and Mr. J. Powers of Notre 

Dame for generous access to data, and we are grateful to Dr. R. Slansky 

(Yale) and Dr. G. Thomas (Argonne) for valuable discussions. 
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FIGURE CAPTIONS 

1. Presented are calculated values of <n >, <n >2, and <n(n - 1) > for 

pp reactions. Here, n stands for the number of n-. The mean is 

defined with respect to ainel (e. g. <n > = C n an/oinel). Data shown 

are taken from Ref. i6; experimental points have been scaled to correct 

for the fact that they are defined with respect to Cltot. 

2. Calculated distributions d‘o/dyldy2 are compared with Notre Dame 

data on n+p 4 rr-n-X at 18. 5 GeV/c, Refs. 5 and 12; yi and y2 are 

rapidities of the two n-Is. Theoretical results are normalized to data 

=t Yl = Y2 = 0 because, as discussed in the text, our prediction for 

< n(n - 1) > is w 13% too high. Curves are computed at fixed values of 

y1 
indicated on the figure, whereas data are averaged over a band 

Ay = 0. 4 centered at values shown. The relatively stable maximum 

at y = 0.4 corresponds to a nova mass of N 4 GeV, which is reasonable 

for production of at least two IT’S. 

3. Correlation function C(y,, y,) for n+p 
_ _ 

4 n n X at 18. 5 GeV/c is plot- 

ted versus y2 for various values of yi. See Eq. (7) of text for defini- 

tion of C. 
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